Chimeric composite skin substitutes for delivery of autologous keratinocytes to promote tissue regeneration.
نویسندگان
چکیده
OBJECTIVE We hypothesize that the pathogen-free NIKS human keratinocyte progenitor cell line cultured in a chimeric fashion with patient's primary keratinocytes would produce a fully stratified engineered skin substitute tissue and serve to deliver autologous keratinocytes to a cutaneous wound. SUMMARY OF BACKGROUND DATA Chimeric autologous/allogeneic bioengineered skin substitutes offer an innovative regenerative medicine approach for providing wound coverage and restoring cutaneous barrier function while delivering autologous keratinocytes to the wound site. NIKS keratinocytes are an attractive allogeneic cell source for this application. METHODS Mixed populations of green fluorescent protein (GFP)-labeled NIKS and unlabeled primary keratinocytes were used to model the allogeneic and autologous components in chimeric monolayer and organotypic cultures. RESULTS In monolayer coculture, GFP-labeled NIKS had no effect on the growth rate of primary keratinocytes and cell-cell junction formation between labeled and unlabeled keratinocytes was observed. In organotypic culture employing dermal and epidermal compartments, chimeric composite skin substitutes generated using up to 90% GFP-labeled NIKS exhibited normal tissue architecture and possessed substantial regions attributable to the primary keratinocytes. Tissues expressed proteins essential for the structure and function of a contiguous, fully-stratified squamous epithelia and exhibited barrier function similar to that of native skin. Furthermore, chimeric human skin substitutes stably engrafted in an in vivo mouse model, with long-term retention of primary keratinocytes but loss of the GFP-labeled NIKS population by 28 days after surgical application. CONCLUSIONS This study provides proof of concept for the use of NIKS keratinocytes as an allogeneic cell source for the formation of bioengineered chimeric skin substitute tissues, providing immediate formal wound coverage while simultaneously supplying autologous cells for tissue regeneration.
منابع مشابه
Vascularization of the dermal support enhances wound re-epithelialization by in situ delivery of epidermal keratinocytes.
Despite significant advances in management of severe wounds such as burns and chronic ulcers, autologous split-thickness skin grafts are still the gold standard of care. The main problems with this approach include pain and discomfort associated with harvesting autologous tissue, limited availability of donor sites, and the need for multiple surgeries. Although tissue engineering has great pote...
متن کاملPigmentation and microanatomy of skin regenerated from composite grafts of cultured cells and biopolymers applied to full-thickness burn wounds.
Rapid coverage and epithelial closure of extensive burns remains a major requirement for patient recovery. Although many skin substitutes have been described, permanent regeneration of both epithelial and connective tissues after a single surgical application of a skin substitute has not become routine. To replace both dermal and epidermal skin, cultured skin substitutes (CSS) were prepared fro...
متن کاملIsolation and Cultivation of Adult Human Keratinocyte Stem Cells for Regeneration of Epidermal Sheets
Background: Keratinocyte stem cell is one of the adult stem cells that inhabits the skin and contributes to skin function and renewal. Adult stem cells are best defined by their capacity to self-renew, and to maintain tissue function for a long period of time. These findings indicate the importance of these cells for clinical applications including regenerative medicine, tissue engineering and ...
متن کاملCharacterization of Hair Follicle Development in Engineered Skin Substitutes
Generation of skin appendages in engineered skin substitutes has been limited by lack of trichogenic potency in cultured postnatal cells. To investigate the feasibility and the limitation of hair regeneration, engineered skin substitutes were prepared with chimeric populations of cultured human keratinocytes from neonatal foreskins and cultured murine dermal papilla cells from adult GFP transge...
متن کاملStructure of a collagen-GAG dermal skin substitute optimized for cultured human epidermal keratinocytes.
Collagen and glycosaminoglycan (GAG) dermal skin substitutes (membranes) were studied as substrates for cultured human epidermal keratinocytes. Structure of dermal substitutes was optimized for pore size to promote ingrowth of fibrovascular tissue from the wound bed and for culture of human keratinocytes of the membrane's surface. Pore size of the freeze-dried material was regulated by control ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Annals of surgery
دوره 251 2 شماره
صفحات -
تاریخ انتشار 2010